问题
选择题
数列{an}的通项为an=2n+1,则由bn=
|
答案
∵数列{an}的通项为an=2n+1,
∴a1+a2+…+an
=2(1+2+…+n)+n
=n(n+1)+n,
∴bn=
=a1+a2+…+an n
=n+2,n(n+1)+n n
∴数列{bn}的前n项和Sn=(1+2)+(2+2)+(3+2)+…+(n+2)
=(1+2+3+…+n)+2n
=
+2nn(n+1) 2
=
n(n+5),1 2
故选C.