问题
选择题
若x∈(e-1,1),a=lnx,b=2lnx,c=ln3x,则( )
A.a<b<c
B.c<a<b
C.b<a<c
D.b<c<a
答案
因为a=lnx在(0,+∞)上单调递增,
故当x∈(e-1,1)时,a∈(-1,0),
于是b-a=2lnx-lnx=lnx<0,从而b<a.
又a-c=lnx-ln3x=a(1+a)(1-a)<0,从而a<c.
综上所述,b<a<c.
故选C
若x∈(e-1,1),a=lnx,b=2lnx,c=ln3x,则( )
A.a<b<c
B.c<a<b
C.b<a<c
D.b<c<a
因为a=lnx在(0,+∞)上单调递增,
故当x∈(e-1,1)时,a∈(-1,0),
于是b-a=2lnx-lnx=lnx<0,从而b<a.
又a-c=lnx-ln3x=a(1+a)(1-a)<0,从而a<c.
综上所述,b<a<c.
故选C