问题
解答题
已知数列{an}的前n项和为Sn,a2=
(1)证明数列{an}为等比数列,并求出通项公式; (2)设数列{bn}的通项bn=
(3)求满足不等式3Tn>Sn(n∈N+)的n的值. |
答案
(1)由2Sn+1=3Sn+2得到,2Sn=3Sn-1+2(n≥2)
则2an+1=3an(n≥2),
又a2=
,2S2=3S1+2,∴a1=1,3 2
=a2 a1 3 2
则
=an+1 an
(n∈N*)3 2
故数列{an}为等比数列,且an=(
)n-13 2
(2)由(1)知,an=(
)n-1,又由数列{bn}的通项bn=3 2
,则bn=(1 an
)n-12 3
故Tn=
=3[1-(1-(
)n2 3 1- 2 3
)n]2 3
(3)由(1)知,an=(
)n-1,则Sn=3 2
=2[(1-(
)n3 2 1- 3 2
)n-1]3 2
由(2)知,Tn=3[1-(
)n]2 3
则3Tn>Sn(n∈N+)⇔9[1-(
)n]>2[(2 3
)n-1],3 2
令t=(
)n(t>1),则9(1-3 2
)>2(t-1),1 t
解得 1<t<
,即1<(9 2
)n<3 2 9 2
又由f(x)=(
)x在R上为增函数,(3 2
)3=3 2
×9 2
,(3 4
)4=3 2
×9 2
,9 8
故n=1,2,3