问题 解答题
已知数列{an}的前n项和为Sn,a2=
3
2
,2Sn+1=3Sn+2(n∈N*).
(1)证明数列{an}为等比数列,并求出通项公式;
(2)设数列{bn}的通项bn=
1
an
,求数列{bn}的前n项的和Tn
(3)求满足不等式3Tn>Sn(n∈N+)的n的值.
答案

(1)由2Sn+1=3Sn+2得到,2Sn=3Sn-1+2(n≥2)

则2an+1=3an(n≥2),

又a2=

3
2
,2S2=3S1+2,∴a1=1,
a2
a1
=
3
2

an+1
an
=
3
2
(n∈N*)

故数列{an}为等比数列,且an=(

3
2
)n-1

(2)由(1)知,an=(

3
2
)n-1,又由数列{bn}的通项bn=
1
an
,则bn=(
2
3
)
n-1

Tn=

1-(
2
3
)n
1-
2
3
=3[1-(
2
3
)n]

(3)由(1)知,an=(

3
2
)n-1,则Sn=
1-(
3
2
)
n
1-
3
2
=2[(
3
2
)n-1]

由(2)知,Tn=3[1-(

2
3
)n]

则3Tn>Sn(n∈N+)⇔9[1-(

2
3
)n]>2[(
3
2
)
n
-1],

t=(

3
2
)n(t>1),则9(1-
1
t
)>2(t-1)

解得 1<t<

9
2
,即1<(
3
2
)n
9
2

又由f(x)=(

3
2
)x在R上为增函数,(
3
2
)3=
9
2
×
3
4
(
3
2
)
4
=
9
2
×
9
8

故n=1,2,3

单项选择题
单项选择题