问题 解答题
已知数列{an} 的前n项和为Sn,且Sn=2an-2,(n=1,2,3,…);数列 {bn}中,b1=1,点p(bn,bn+1)在直线x-y+2=0上.
(Ⅰ)求数列{an} 和 {bn}的通项公式;
(Ⅱ)设数列{
bn+1
2
}的前n和为Sn,求
1
S1
+
1
S2
+…+
1
Sn

(Ⅲ)设数列{cn}的前n项和为Tn,且cn=an•bn,求Tn
答案

(Ⅰ)∵Sn=2an-2,

∴当n≥2时,an=Sn-Sn-1=(2an-2)-(2an-1-2),…(1分)

即an=2an-1

∴数列{an}是等比数列.

∵a1=S1=2a1-2,∴a1=2

∴an=2n.                           …(3分)

∵点P(bn,bn+1)在直线x-y+2=0上,

∴bn+1-bn=2,

即数列{bn}是等差数列,

又b1=1,∴bn=2n-1.…(5分)

(Ⅱ)由题意可得

bn+1
2
=n,∴Sn=
n(n+1)
2
,…(6分)

1
Sn
=2(
1
n
-
1
n+1
),…(7分)

1
S1
+
1
S2
+…+
1
Sn
=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=
2n
n+1
.…(9分)

(Ⅲ)∵cn=anbn=(2n-1)•2n…(10分)

Tn=1×2+3×22+5×23+…+(2n-3)2n-1+(2n-1)2n2Tn=1×22+3×23+5×24+…+(2n-3)2n+(2n-1)2n+1…(11分)

两式相减得:-Tn=2+2×(22+23+24+…+2n)-(2n-1)2n+1

=-6-(2n-3)2n+1…(13分)

Tn=6+(2n-3)2n+1…(14分)

单项选择题