问题 解答题
已知等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,公比q=2,且a2b2=20,a3b3=56,
(1)求an与bn
(2)求数列{anbn}的前n项和Tn
(3)记Cn=
1
Sn-n
,若C1+C2+C3+…+Cn≥m2-
3
2
对任意正整数n恒成立,求实数m 的取值范围.
答案

(1)设{an}的公差为d,则

(3+d)•2b1=20
(3+2d)•4b1=56
,解之得b1=d=2

∴数列{an}的通项为an=3+2(n-1)=2n+1;数列{bn}的通项为bn=2n

(2)由(1)得anbn=(2n+1)2n

∴Tn=3×2+5×22+7×23+…+(2n+1)2n

两边都乘以2,得2Tn=3×22+5×23+7×24+…+(2n+1)2n+1

两式相减,得

-Tn=6+2(22+23+…+2n)-(2n+1)2n+1

=6+

8(1-2n-1)
1-2
-(2n+1)2n+1=-2+(1-2n)2n+1

∴Tn=(2n+1)2n+1+2

(3)Sn=3n+

n(n-1)
2
×2=n2+2n

∴Cn=

1
Sn-n
=
1
n2+n
=
1
n
-
1
n+1

由此可得C1+C2+C3+…+Cn=(1-

1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=1-
1
n+1

因此,当n=1时,C1+C2+C3+…+Cn的最小值为

1
2

∵不等式C1+C2+C3+…+Cn≥m2-

3
2
对任意正整数n恒成立,

1
2
≥m2-
3
2
,解之得-
2
≤m≤
2
,即实数m的取值范围是[-
2
2
].

多项选择题
多项选择题