问题
解答题
已知在数列{an}中,a1=
(1)求{an}的通项公式; (2)令bn=(
|
答案
(1)∵an=Sn-Sn-1 (n≥2),Sn=n2an-n(n-1)
∴Sn=n2(Sn-Sn-1)-n(n-1),即(n2-1 )Sn-n2Sn-1=n(n-1),
∴
Sn-n+1 n
Sn-1=1,∴{n n-1
Sn}是首项为1,公差为1的等差数列n+1 n
∴
Sn=1+(n-1)×1=n,∴Sn=n+1 n n2 n+1
∵Sn=n2an-n(n-1)
∴
=n2an-n(n-1)n2 n+1
∴an=1-
;1 n2+n
(2)证明:由(1)知,bn=(
)n+1-an=(1 2
)n+1 2
=(1 n2+n
)n+1 2
-1 n 1 n+1
∴Tn=
+1 2
+…+1 22
+1-1 2n
+1 2
-1 2
+…+1 3
-1 n
=1-1 n+1
+1-1 2n
<21 n+1