问题 填空题
若数列{an}是正项数列,且
a1
+
a2
+…+
an
=n2+3n(n∈N*),则
a1
2
+
a2
3
+…+
an
n+1
=______.
答案

令n=1,得

a1
=4,∴a1=16.

当n≥2时,

a1
+
a2
+…+
an-1
=(n-1)2+3(n-1).

与已知式相减,得

an
=(n2+3n)-(n-1)2-3(n-1)=2n+2,

∴an=4(n+1)2,n=1时,a1适合an

∴an=4(n+1)2

an
n+1
=4n+4,

a1
2
+
a2
3
++
an
n+1
=
n(8+4n+4)
2
=2n2+6n.

故答案为2n2+6n

问答题 简答题
单项选择题