已知数列{an}满足a1=1, a2=
(Ⅰ)求数列{an}的通项公式; (Ⅱ)设数列{bn}的前n项和为Sn=1-
(Ⅲ)记数列{1-
|
(Ⅰ)由an-1an+anan+1=2an-1an+1⇒an(an-1+an+1)=2an-1an+1⇒
=an-1+an+1 an-1an+1 2 an
⇒
+1 an+1
=1 an-1
⇒2 an
-1 an+1
=1 an
-1 an
.1 an-1
而a1=1且
-1 a2
=2-1=1,1 a1
因此{
}是首项为1,公差为1的等差数列.1 an
从而
=1+1×(n-1)=n⇒an=1 an
.1 n
(Ⅱ)当n=1时,b1=S1=1-
=1 2
.1 2
当n≥2时,bn=Sn-Sn-1=(1-
)-(1-1 2n
)=1 2n-1
.1 2n
而b1也符合上式,故bn=
,从而:1 2n
=bn an
.n 2n
所以Tn=
+1 21
+2 22
+…+3 23
⇒n 2n
Tn=1 2
+1 22
+2 23
+…+3 24
.n 2n+1
将上面两式相减,可得:
Tn=1 2
+1 21
+1 22
+…+1 23
-1 2n
=n 2n+1
-
(1-1 2
)1 2n 1- 1 2
=1-n 2n+1
-1 2n
⇒Tn=2-n 2n+1
.n+2 2n
(Ⅲ)因为1-
=1-(a 2n
)2=(1+1 n
)(1-1 n
)=1 n
•n+1 n
.n-1 n
故∏limit
(1-s ni=2
)=(a 2i
•3 2
)•(1 2
•4 3
)•(2 3
•5 4
)•…•(3 4
•n+1 n
)=(n-1 n
•3 2
•4 3
•…•5 4
)•(n+1 n
•1 2
•2 3
•…•3 4
)n-1 n
•n+1 2
=1 n
(1+1 2
).1 n
由于n≥2,n∈N*,故0<
≤1 n
,从而1 2
<1 2
(1+1 2
)≤1 n
<1,即3 4
<∏limit1 2
(1-s ni=2
)<1.a 2i