问题 解答题
已知数列{an}满足a1=1,  a2=
1
2
,  an-1an+anan+1=2an-1an+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Sn=1-
1
2n
,试求数列{
bn
an
}
的前n项和Tn
(Ⅲ)记数列{1-
a2n
}
的前n项积为∏limit
sni=2
(1-
a2i
)
,试证明:
1
2
<∏limit
sni=2
(1-
a2i
)<1
答案

(Ⅰ)由an-1an+anan+1=2an-1an+1an(an-1+an+1)=2an-1an+1

an-1+an+1
an-1an+1
=
2
an

1
an+1
+
1
an-1
=
2
an
1
an+1
-
1
an
=
1
an
-
1
an-1

a1=1且

1
a2
-
1
a1
=2-1=1,

因此{

1
an
}是首项为1,公差为1的等差数列.

从而

1
an
=1+1×(n-1)=n⇒an=
1
n

(Ⅱ)当n=1时,b1=S1=1-

1
2
=
1
2

当n≥2时,bn=Sn-Sn-1=(1-

1
2n
)-(1-
1
2n-1
)=
1
2n

而b1也符合上式,故bn=

1
2n
,从而:
bn
an
=
n
2n

所以Tn=

1
21
+
2
22
+
3
23
+…+
n
2n
1
2
Tn=
1
22
+
2
23
+
3
24
+…+
n
2n+1

将上面两式相减,可得:

1
2
Tn=
1
21
+
1
22
+
1
23
+…+
1
2n
-
n
2n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1
=1-
1
2n
-
n
2n+1
Tn=2-
n+2
2n

(Ⅲ)因为1-

a2n
=1-(
1
n
)2=(1+
1
n
)(1-
1
n
)=
n+1
n
n-1
n

∏limit

sni=2
(1-
a2i
)=(
3
2
1
2
)•(
4
3
2
3
)•(
5
4
3
4
)•…•(
n+1
n
n-1
n
)=(
3
2
4
3
5
4
•…•
n+1
n
)•(
1
2
2
3
3
4
•…•
n-1
n
)
n+1
2
1
n
=
1
2
(1+
1
n
)

由于n≥2,n∈N*,故0<

1
n
1
2
,从而
1
2
1
2
(1+
1
n
)≤
3
4
<1
,即
1
2
<∏limit
sni=2
(1-
a2i
)<1

单项选择题
单项选择题