问题
解答题
求数列1
|
答案
数列的通项为an=n+(
)n1 2
所以数列的前n项和:
Sn=(1+2+3+…+n)+[
+(1 2
)2+…+(1 2
)n]1 2
=
+(1+n)n 2
-(1 2
)n+11 2 1- 1 2
=-
+1 2n
+1.n2+n 2
所以数列的前n项和为-
+1 2n
+1n2+n 2
求数列1
|
数列的通项为an=n+(
)n1 2
所以数列的前n项和:
Sn=(1+2+3+…+n)+[
+(1 2
)2+…+(1 2
)n]1 2
=
+(1+n)n 2
-(1 2
)n+11 2 1- 1 2
=-
+1 2n
+1.n2+n 2
所以数列的前n项和为-
+1 2n
+1n2+n 2