问题
解答题
设数列{an}满足a1=a,an+1=can+1-c(n∈N*),其中a,c为实数,且c≠0. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设a=
|
答案
(Ⅰ)∵an+1=can+1-c,an+1-1=c(an-1),
∴当a1=a≠1时,{an-1}是首项为a-1,公比为c的等比数列
∴an-1=(a-1)cn-1
当a=1时,an=1仍满足上式.
∴数列{an-1}的通项公式为an=(a-1)cn-1+1(n∈N*);
(Ⅱ)由(1)得,当a=
,c=1 2
时,1 2
bn=n(1-an)=n{1-[1-(
)n]}=n(1 2
)n.1 2
∴Sn=b1+b2++bn=
+2×(1 2
)2+3×(1 2
)3++n×(1 2
)n.1 2
Sn=(1 2
)2+2×(1 2
)3++n×(1 2
)n+1.1 2
两式作差得
Sn=1 2
+(1 2
)2++(1 2
)n-n×(1 2
)n+1.1 2
Sn=1+
+(1 2
)2++(1 2
)n-1-n×(1 2
)n1 2
=
-n×(1-(
)n1 2 1- 1 2
)n=2×(1-1 2
)-1 2n
.n 2n
∴Sn=2-
.n+2 2n