问题
解答题
各项均为正数的数列{an}中,前n项和Sn=(
(1)求数列{an}的通项公式; (2)若
(3)对任意m∈N*,将数列{an}中落入区间(2m,22m)内的项的个数记为bm,求数列{bm}的前m项和Sm. |
答案
(1)∵Sn=(
)2,an+1 2
∴Sn-1=(
)2,n≥2,an-1+1 2
两式相减得an=(
)2-(an+1 2
)2,n≥2,…(2分)an-1+1 2
整理得(an+an-1)(an-an-1-2)=0,
∵数列{an}的各项均为正数,
∴an-an-1=2,n≥2,∴{an}是公差为2的等差数列,…(4分)
又S1=(
)2得a1=1,∴an=2n-1.…(5分)a1+1 2
(2)由题意得k>(
+1 a1a2
+…+1 a2a3
)max,1 anan+1
∵
=1 anan+1
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
),1 2n+1
∴
+1 a1a2
+…+1 a2a3
=1 anan+1
[(1-1 2
)+(1 3
-1 3
)+…+(1 5
-1 2n-1
)]1 2n+1
=
(1-1 2
)<1 2n+1
…(8分)∴k≥1 2
…(10分)1 2
(3)对任意m∈N+,2m<2n-1<22m,则2m-1+
<n<22m-1+1 2
,1 2
而n∈N*,由题意可知bm=22m-1-2m-1,…(12分)
于是Sm=b1+b2+…+bm=21+23+…+22m-1-(20+21+…+2m-1)
=
-2-22m+1 1-22
=1-2m 1-2
-(2m-1)=22m+1-2 3
,22m+1-3•2m+1 3
即Sm=
.…(16分)22m+1-3•2m+1 3