问题
解答题
正项数列{an}的前n项和为Sn,且2
(Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=
|
答案
(Ⅰ)∵2
=a1+1,S1
∴a1=1.
∵an>0,2
=an+1,Sn
∴4Sn=(an+1)2.①
∴4Sn-1=(an-1+1)2(n≥2).②
①-②,得4an=an2+2an-an-12-2an-1,
即(an+an-1)(an-an-1-2)=0,
而an>0,
∴an-an-1=2(n≥2).
故数列{an}是首项为1,公差为2的等差数列.
∴an=2n-1.
(Ⅱ)bn=
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
).1 2n+1
Tn=b1+b2++bn=
(1-1 2
)+1 3
(1 2
-1 3
)++1 5
(1 2
-1 2n-1
)=1 2n+1
(1-1 2
)<1 2n+1
.1 2