问题 解答题
正项数列{an}的前n项和为Sn,且2
Sn
=an+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
anan+1
,数列{bn}的前n项和为Tn,求证:Tn
1
2
答案

(Ⅰ)∵2

S1
=a1+1,

∴a1=1.

∵an>0,2

Sn
=an+1,

∴4Sn=(an+1)2.①

∴4Sn-1=(an-1+1)2(n≥2).②

①-②,得4an=an2+2an-an-12-2an-1

即(an+an-1)(an-an-1-2)=0,

而an>0,

∴an-an-1=2(n≥2).

故数列{an}是首项为1,公差为2的等差数列.

∴an=2n-1.

(Ⅱ)bn=

1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
).

Tn=b1+b2++bn=

1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)++
1
2
(
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)<
1
2

选择题
选择题