如图所示,质量M=10kg,上表面光滑的足够长的木板在F=50N的水平拉力作用下,以v0=5m/s的速度沿水平地面向右匀速运动.现有两个小铁块,它们的质量均为m=1kg.在某时刻将第一个小铁块无初速度地放在木板的最右端,当木板运动了L=lm时,又无初速度地在木板最右端放上第二个小铁块.取g=10m/s2.求:
(1)第一个铁块放上后,木板的加速度是多大?
(2)第二个小铁块放上时,木板的速度是多大?
(3)第二个小铁块放上后,木板能运动的最大位移是多少?
![](https://img.ixiawen.com/uploadfile/2017/0503/20170503105205407.png)
(1)设木板与地面间的动摩擦因数为μ,未放小铁块时,对木板由平衡条件得:
F=μMg,所以解得:μ=0.5
第一个小铁块放上后,木板做匀减速运动,加速度为a1,根据牛顿第二定律得:
F-μ(M+m)g=Ma1,所以a1=-
=-0.5m/s2 μmg M
故第一个小铁块放上后,木板的加速度大小为0.5m/s2.
(2)放上第一个木块后,木板做匀减速运动,设第二个小铁块放上时,木板的速度是v1,则有:
-v 21
=2a1L,所以解得:v1=2v 20
m/s6
故第二个小铁块放上时,木板的速度是:v1=2
m/s.6
(3)第二个小铁块放上后,木板做匀减速运动,加速度为a2,则有:
F-μ(M+2m)g=Ma2 ,所以有:a2=-
=-1m/s2.2μmg M
设第二个小铁块放上后,木板能运动的最大位移是s,则有:
0-
=2a2s,所以解得:s=12mv 21
故第二个小铁块放上后,木板能运动的最大位移是12m.