问题
选择题
已知等比数列{an}中,an>0,a2=
|
答案
设等比数列{an}的公比为q,∵an>0,∴q>0.经验证q=1不成立.
由a2=
,1 4
=S4 S2
,可得5 4
,及q>0,解得a1q= 1 4
=a1(q4-1) q-1 a1(q2-1) q-1 5 4
.a1= 1 2 q= 1 2
∴an=a1qn-1=(
)n.1 2
∴
-1 a1
+1 a2
-1 a3
+…+(-1)n+11 a4 1 an
=2-22+23+…+(-1)n+1•2n
=2[1-(-2)n] 1-(-2)
=
[1-(-2)n].2 3
故选D.