问题 选择题
已知等比数列{an}中,an>0,a2=
1
4
S4
S2
=
5
4
,则
1
a1
-
1
a2
+
1
a3
-
1
a4
+…+(-1)n+1
1
an
的值为(  )
A.2[1-(-2)n]B.2(1-2nC.
2
3
(1+2n)
D.
2
3
[1-(-2)n]
答案

设等比数列{an}的公比为q,∵an>0,∴q>0.经验证q=1不成立.

a2=

1
4
S4
S2
=
5
4
,可得
a1q=
1
4
a1(q4-1)
q-1
a1(q2-1)
q-1
=
5
4
,及q>0,解得
a1=
1
2
q=
1
2

an=a1qn-1=(

1
2
)n

1
a1
-
1
a2
+
1
a3
-
1
a4
+…+(-1)n+1
1
an

=2-22+23+…+(-1)n+1•2n

=

2[1-(-2)n]
1-(-2)

=

2
3
[1-(-2)n].

故选D.

单项选择题 A1型题
单项选择题