问题 选择题
已知数列{an},a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上,则
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=(  )
A.
n(n+1)
2
B.
2
n(n+1)
C.
2n
n+1
D.
n
2(n+1)
答案

∵点P(an,an+1)(n∈N*)在直线x-y+1=0上

∴an-an+1+1=0

∴数列{an}是以1为首项,以1为公差的等差数列.

∴an=n

sn=

n(n+1)
2

1
sn
=
2
n(n+1)
=2(
1
n
-
1
n+1
)

1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=
2n
n+1

故选C

选择题
多项选择题