问题
填空题
设数列xn满足log2xn+1=1+log2xn(n∈N*),且x1+x2+…+x10=10,记xn的前n项和为Sn,则S20=______.
答案
由log2xn+1=1+log2xn(n∈N*),得log2
=1⇒xn+1 xn
=2,即数列{xn}是公比为2的等比数列.xn+1 xn
又x1+x2+…+x10=10,既
=10.所以S20=x1(1-210) 1-2
=x1(1-220) 1-2
=10×(1+210)=10250,x1(1+210)(1-210) 1-2
故答案为:10250.