问题
填空题
数列{an}满足an+an+1=
|
答案
∵an+an+1=
(n∈N*),a1=-1 2
,1 2
S2011=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)
=-
+1 2
+…+1 2 1 2
=-
+1 2
×10051 2
=502
故答案为:502
数列{an}满足an+an+1=
|
∵an+an+1=
(n∈N*),a1=-1 2
,1 2
S2011=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)
=-
+1 2
+…+1 2 1 2
=-
+1 2
×10051 2
=502
故答案为:502