问题
填空题
数列{an}的通项公式是an=
|
答案
∵an=
=1 n(n+1)
-1 n 1 n+1
∴Sn=a1+a2+…+an
=1-
+1 2
-1 2
+…+1 3
-1 n 1 n+1
=1-
=1 n+1 n n+1
∴
=n n+1 10 11
∴n=10
故答案为:10
数列{an}的通项公式是an=
|
∵an=
=1 n(n+1)
-1 n 1 n+1
∴Sn=a1+a2+…+an
=1-
+1 2
-1 2
+…+1 3
-1 n 1 n+1
=1-
=1 n+1 n n+1
∴
=n n+1 10 11
∴n=10
故答案为:10