问题
解答题
设数列{an}的前n项和为Sn,已知a1=1,Sn=2n+1-n-2(n∈N*), (Ⅰ)求数列{an}的通项公式; (Ⅱ)若bn=
|
答案
(Ⅰ)∵Sn=2n+1-n-2
当n≥2时Sn-1=2n-(n-1)-2(n∈N*)
∴an=2n-1(n≥2)
又a1=S1=1
∴an=2n-1(n∈N*)
(Ⅱ)∵an=2n-1∴bn=
=n (2n+1-1)-(2n-1)
=n 2n+1-2n n 2n
∴Tn=
+1 2
+2 22
+…+3 23 n 2n
Tn=,1 2
+1 22
+…+2 23
+n-1 2n n 2n+1
∴Tn=2(
+1 2
+1 22
+…+1 23
-1 2n
)=2-n 2n+1
-1 2n-1 n 2n