问题
填空题
若数列{an}满足:a1=1,an+1=2an.n=1,2,3….则a1+a2+…+an=______.
答案
数列{an}满足:a1=1,an+1=2an.n=1,2,3….所以数列是等比数列,公比为:2;
a1+a2+…+an=
=2n-1;1(1-2n) 1-2
故答案为:2n-1
若数列{an}满足:a1=1,an+1=2an.n=1,2,3….则a1+a2+…+an=______.
数列{an}满足:a1=1,an+1=2an.n=1,2,3….所以数列是等比数列,公比为:2;
a1+a2+…+an=
=2n-1;1(1-2n) 1-2
故答案为:2n-1