问题
解答题
在数列{an}中,a1=1,an+1=
(Ⅰ)求a2,a3,a4; (Ⅱ)猜想an;(不用证明) (Ⅲ)若数列bn=
|
答案
(Ⅰ)∵a1=1,an+1=2an 2+an
∴a2=
=2a1 2+a1
,a3=2 3
=2a2 2+a2
,a4=2 4
=2a3 2+a3
.2 5
(Ⅱ)猜想:an=
.2 n+1
(Ⅲ)由(Ⅱ)知:bn=
=an n
=2(2 n(n+1)
-1 n
)1 n+1
从而Sn=b1+b2+…+bn
=2[(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)]=2(1-1 n+1
)=1 n+1 2n n+1