问题 解答题
已知函数f(x)=(
x
+
2
)2(x>0)
,设正项数列an的首项a1=2,前n 项和Sn满足Sn=f(Sn-1)(n>1,且n∈N*).
(1)求an的表达式;
(2)在平面直角坐标系内,直线ln的斜率为an,且ln与曲线y=x2相切,ln又与y轴交于点Dn(0,bn),当n∈N*时,记dn=
1
4
|
Dn+1Dn
|-1
,若Cn=
d2n+1
+
d2n
2dn+1dn
,求数列cn的前n 项和Tn
答案

(1)由Sn=(

Sn-1
+
2
)2得:
Sn
-
Sn-1
=
2
,所以数列{
Sn
}
是以
2
为公差的等差数列.

Sn
=
2
n,Sn=2n2,an=Sn-Sn-1=4n-2(n≥2),又a1=2.∴an=4n-2(n∈N*

(2)设ln:y=anx+bn,由

y=anx+bn
y=x2
x2-anx-b n=0,

据题意方程有相等实根,

∴△=an2+4bn=0,

bn=-

1
4
an2=-
1
4
(4n-2)2=-(2n-1)2

当n∈N+时,dn=

1
4
|bn-bn+1|-1=
1
4
|-(2n-1)2+(2n+1)2|-1=2n-1

Cn=

(2n+1)2+(2n-1)2
2(4n2-1)
=
8n2+2
2(4n2-1)
=
4n2+1
4n2-1
=1+(
1
2n-1
-
1
2n+1
)

∴Tn=C1+C2+C3+…+Cn=n+(1-

1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)

=n+1-

1
2n+1
=
2n2+3n
2n+1

问答题 简答题
多项选择题