问题
解答题
已知函数f(x)=(
(1)求an的表达式; (2)在平面直角坐标系内,直线ln的斜率为an,且ln与曲线y=x2相切,ln又与y轴交于点Dn(0,bn),当n∈N*时,记dn=
|
答案
(1)由Sn=(
+Sn-1
)2得:2
-Sn
=Sn-1
,所以数列{2
}是以Sn
为公差的等差数列.2
∴
=Sn
n,Sn=2n2,an=Sn-Sn-1=4n-2(n≥2),又a1=2.∴an=4n-2(n∈N*)2
(2)设ln:y=anx+bn,由
⇒x2-anx-b n=0,y=anx+bn y=x2
据题意方程有相等实根,
∴△=an2+4bn=0,
∴bn=-
an2=-1 4
(4n-2)2=-(2n-1)2,1 4
当n∈N+时,dn=
|bn-bn+1|-1=1 4
|-(2n-1)2+(2n+1)2|-1=2n-1,1 4
∴Cn=
=(2n+1)2+(2n-1)2 2(4n2-1)
=8n2+2 2(4n2-1)
=1+(4n2+1 4n2-1
-1 2n-1
),1 2n+1
∴Tn=C1+C2+C3+…+Cn=n+(1-
)+(1 3
-1 3
)+(1 5
-1 5
)+…+(1 7
-1 2n-1
)1 2n+1
=n+1-
=1 2n+1
.2n2+3n 2n+1