问题
解答题
数列{an}满足a1=1,an+1=
(Ⅰ)证明:数列{
(Ⅱ)求数列{an}的通项公式an; (Ⅲ)设bn=n(n+1)an,求数列{bn}的前n项和Sn. |
答案
(Ⅰ)证明:由已知可得
=an+1 2n+1
,an an+2n
即
=2n+1 an+1
+1,2n an
即
-2n+1 an+1
=12n an
∴数列{
}是公差为1的等差数列(5分)2n an
(Ⅱ)由(Ⅰ)知
=2n an
+(n-1)×1=n+1,2 a1
∴an=
(8分)2n n+1
(Ⅲ)由(Ⅱ)知bn=n•2n
Sn=1•2+2•22+3•23++n•2n
2Sn=1•22+2•23+…+(n-1)•2n+n•2n+1(10分)
相减得:-Sn=2+22+23++2n-n•2n+1=
-n•2n+1=2n+1-2-n•2n+1(12分)2(1-2n) 1-2
∴Sn=(n-1)•2n+1+2