已知数列{an}满足a1=-1,an+1-2an-3=0数列{bn}满足bn=log2(an+3).
(1)求{bn}的通项公式;
(2)若数列{2n+1bn}的前n项的和为sn,试比较sn与8n2-4n的大小.
(1)由有an+1-2an-3=0,得:an+1+3=2(an+3),
∴an+3=(a1+3)2n-1=2n,
∴bn=log22n=n;
(2)∵Sn=1×22+2×23+3×24+…+n×2n+1①
①×2得:2Sn=1×23+2×24+3×25+…+n×2n+2②
①-②得:Sn=22+23+24+…+2n+1-n×2n+2=
-n×2n+2,4(1-2n) 1-2
∴Sn=4+(n-1)×2n+2,
∴Sn-(8n2-4n)=4+(n-1)×2n+2-8n2+4n=(n-1)2n+2-4(2n+1)(n-1)=4(n-1)[2n-(2n+1)]
当n=1时,Sn-(8n2-4n)=0,即Sn=8n2-4n;
当n=2时,Sn-(8n2-4n)=4×(22-5)=-4,即Sn<8n2-4n;
当n=3时,Sn-(8n2-4n)=4×2×(23-7)=8,即Sn>8n2-4n;
当n>3时,由指数函数的图象知总有2n>(2n+1),
∴n>3时,有Sn>8n2-4n.