问题
解答题
已知数列{an}满足a1=
(1)求数列{an}的通项公式; (2)若cn=(an-
|
答案
(1)解∵点(2Sn+an,Sn+1)在f(x)=
x+1 2
的图象上1 3
∴Sn+1=
(2Sn+an)+1 2
即Sn+1-Sn=1 3
an+1 2 1 3
∴an+1=
an+1 2 1 3
∴an+1-
=2 3
(an-1 2
)2 3
∴{an-
}是以a1-2 3
=2 3
为首项,以1 2
为公比的等比数列1 2
∴an-
=2 3
•(1 2
)n-11 2
∴an=
+(2 3
)n1 2
(2)∵cn=(an-
)n=2 3 n 2n
∴Tn=
+1 2
+2 22
+…+3 23
…①n 2n
Tn=1 2
+1 22
+…+2 23
.②n 2n+1
①-②得
Tn=1 2
+1 2
+…+1 22
-1 2n n 2n+1
∴Tn=2-
-1 2n-1 n 2n