问题
解答题
已知数列{an}的前n项和为Sn,且a1=1,an+1=2Sn.
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式an;
(3)设bn=nan,求数列{bn}的前n项和Tn.
答案
(1)∵a1=1,
∴a2=2a1=2,a3=2S2=6,a4=2S3=18,
(2)∵an+1=2S1,∴aN=2Sn-1(n≥2),
∴an+1-an=2an,
=3(n≥2)an+1 an
又
=2,∴数列{an}自第2项起是公比为3的等比数列,a2 a1
∴an=
,1(n=1) 2×3n-2(n≥2)
(3)∵bn=nan,∴bn=
,1(n=1) 2n×3n-2(n≥2)
∴Tn=1+2×2×30+2×3×31+2×4×32++2×n×3n-2,…①
3Tn=3+2×2×31+2×3×32+2×4×33++2×n×3n-1…②(12分)
①-②得-2Tn=-2+2×2×30+2×31+2×32++2×3n-2-2×n×3n-1
=2+2(3+32+33++3n-2)-2n×3n-1=(1-2n)×3n-1-1
∴Tn=(n-
)×3n-1+1 2
.(14分)1 2