问题 解答题

已知数列{an}的前n项和为Sn,且a1=1,an+1=2Sn

(1)求a2,a3,a4的值;

(2)求数列{an}的通项公式an

(3)设bn=nan,求数列{bn}的前n项和Tn

答案

(1)∵a1=1,

∴a2=2a1=2,a3=2S2=6,a4=2S3=18,

(2)∵an+1=2S1,∴aN=2Sn-1(n≥2),

∴an+1-an=2an

an+1
an
=3(n≥2)

a2
a1
=2,∴数列{an}自第2项起是公比为3的等比数列,

an=

1(n=1)
3n-2(n≥2)

(3)∵bn=nan,∴bn=

1(n=1)
2n×3n-2(n≥2)

∴Tn=1+2×2×30+2×3×31+2×4×32++2×n×3n-2,…①

3Tn=3+2×2×31+2×3×32+2×4×33++2×n×3n-1…②(12分)

①-②得-2Tn=-2+2×2×30+2×31+2×32++2×3n-2-2×n×3n-1

=2+2(3+32+33++3n-2)-2n×3n-1=(1-2n)×3n-1-1

Tn=(n-

1
2
3n-1+
1
2
.(14分)

选择题
单项选择题 A1/A2型题