问题 解答题

已知数列{an}中,a1=-60,an+1=3an+2,

(1)求数列{an}的通项an

(2)求数列{an}的前n项和Sn

答案

(1)由an+1=3an+2,得:an+1+1=3(an+1)

设bn=an+1,,则bn+1=an+1+1,即:bn+1=3bn

所以数列{bn}是首项b1=a1+1=-60+1=-59,公比q=3的等比数列∴bn=b1•qn-1=-59•3n-1又bn=an+1,∴an=-59•3n-1-1

(2)数列{an}的通项公式an=-59•3n-1-1,则

Sn=a1+a2+a3+…+an
=(-59•30-1)+(-59•31-1)+(-59•32-1)+…+(-59•3n-1-1)

=-59(1+3+32+…+3n-1)-n
=-
59
2
3n-n+
59
2

单项选择题
单项选择题