问题
解答题
已知数列{an}中,a1=-60,an+1=3an+2,
(1)求数列{an}的通项an;
(2)求数列{an}的前n项和Sn.
答案
(1)由an+1=3an+2,得:an+1+1=3(an+1)
设bn=an+1,,则bn+1=an+1+1,即:bn+1=3bn,
所以数列{bn}是首项b1=a1+1=-60+1=-59,公比q=3的等比数列∴bn=b1•qn-1=-59•3n-1又bn=an+1,∴an=-59•3n-1-1
(2)数列{an}的通项公式an=-59•3n-1-1,则
Sn=a1+a2+a3+…+an =(-59•30-1)+(-59•31-1)+(-59•32-1)+…+(-59•3n-1-1)
=-59(1+3+32+…+3n-1)-n =-
•3n-n+59 2 59 2