数列{an} 中a1=
( I ) 求数列{an}的通项公式an以及前n项和Sn; (Ⅱ)记 bn=
(Ⅲ)试确定Tn与
|
(I)s n+1-sn=(
)n+1得an+1=(1 2
)n+1(n∈N*)(1分)1 2
又a1=
,故an=(1 2
)n(n∈N*)(2分)1 2
从而sn=
=1-(
[1-(1 2
)n]1 2 1- 1 2
)n(4分)1 2
(Ⅱ)由(I)bn=
=n+1 2an
=n+1 2×2n
Tn=n+1 2n+1
+2 22
+3 23
++4 24
,(5分)n+1 2n+1
Tn= 1 2
+2 23
+3 24
++4 25
+n 2n+1
(6分)n+1 2n+2
两式相减,得
Tn= 1 2
+2 22
+1 23
+1 24
++1 25
-1 2n+1
(7分)n+1 2n+2
=
+1 2
-
×(1-1 23
)1 2n-1 1- 1 2
=n+1 2n+2
-3 4
-1 2n+1
(8分)n+1 2n+2
所以Tn=
-3 2
-1 2n
=n+1 2n+1
-3 2
(9分),n+3 2n+1
(Ⅲ)Tn-
=5n 4n+2
-3 2
-n+3 2n+1
=5n 4n+2 (n+3)(2n-2n-1) 2n+1(2n+1)
于是确定Tn与
的大小关系等价于比较2n与2n+1的大小(10分)5n 4n+2
n=1时2<2+1,n=2时22<2×2+1,n=3时23>2×3+1(11分)
令g(x)=2x-2x-1,g′(x)=2xln2-2,x>2时g(x)为增函数,(12分)
所以n≥3时g(n)≥g(3)=1>0,2n≥2n+1,(13分)
综上所述n=1,2时Tn<
n=3时Tn>5n 4n+2
(14分)5n 4n+2