问题
解答题
设函数f(x)=
(1)求an; (2)设bn=
|
答案
(1)由f(x)=
x3+nx2+(n2-1)x+1 3
n11 12
得f'(x)=x2+2nx+(n2-1)
在区间[n,+∞)上的最小值为
,4n2-1
∴an=
.4n2-1
(2)因为bn=
=1 a 2n
=1 4n2-1
(1 2
-1 2n-1
),1 2n+1
∴Sn=b1+b2+b3+…+bn
=
[(1-1 2
)+(1 3
-1 3
)+(1 5
-1 5
)+…+(1 7
-1 2n-1
)]1 2n+1
=
(1-1 2
).1 2n+1