问题
解答题
设数列{an}满足a1+3a2+32a3+…+3n-1an=
(1)求数列{an}的通项; (2)设bn=
|
答案
(1)∵a1+3a2+32a3+…+3n-1an=
,①n 3
∴当n≥2时,a1+3a2+32a3+…+3n-2an-1=
.②n-1 3
①-②,得3n-1an=
,an=1 3
(n≥2),1 3n
在①中,令n=1,
得a1=
.∴an=1 3
.1 3n
(2)∵bn=
,n an
∴bn=n•3n.
∴Sn=3+2×32+3×33+…+n•3n.③
∴3Sn=32+2×33+3×34+…+n•3n+1.④
④-③,得2Sn=n•3n+1-(3+32+33+…+3n),
即2Sn=n•3n+1-
.3(1-3n) 1-3
∴Sn=
+(2n-1)3n+1 4
.3 4