问题 解答题
数列{an}中,a1=1,a2=
2
3
,且
1
an-1
+
1
an+1
=
2
an

(1)求an
(2)设bn=anan+1,求b1+b2+b3+…bn
(3)求证:a12+a22+a32+…+an2<4
答案

(1)依题意知{

1
an
}为等差数列,公差d=
1
a2
-
1
a1
=
1
2

1
an
=1+
1
2
(n-1),∴an=
2
n+1

(2)bn=anan+1=

4
(n+1)(n+2)
4(
1
n+1
-
1
n+2
)

∴b1+b2+…+bn=4[(

1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2
)]=4(
1
2
-
1
n+2
) =
2n
n+2

(3)an2=

4
(n+1)2
4
n(n+1)
=4(
1
n+1
-
1
n+2
),

∴a12+a22+…+an2<4[(1-

1
2
) +(
1
2
-
1
3
)+…+(
1
n+1
-
1
n+2
)]=4(1-
1
n+1
)<4.

单项选择题
单项选择题 A1型题