问题
解答题
数列{an}中,a1=1,a2=
(1)求an; (2)设bn=anan+1,求b1+b2+b3+…bn; (3)求证:a12+a22+a32+…+an2<4 |
答案
(1)依题意知{
}为等差数列,公差d=1 an
-1 a2
=1 a1
,1 2
∴
=1+1 an
(n-1),∴an=1 2
.2 n+1
(2)bn=anan+1=
4(4 (n+1)(n+2)
-1 n+1
),1 n+2
∴b1+b2+…+bn=4[(
-1 2
)+(1 3
-1 3
)+…+(1 4
-1 n+1
)]=4(1 n+2
-1 2
) =1 n+2
.2n n+2
(3)an2=
<4 (n+1)2
=4(4 n(n+1)
-1 n+1
),1 n+2
∴a12+a22+…+an2<4[(1-
) +(1 2
-1 2
)+…+(1 3
-1 n+1
)]=4(1-1 n+2
)<4.1 n+1