问题
解答题
设数列{an}的前n项和为Sn,a1=1,且数列{Sn}是以2为公比的等比数列.
(I)求数列{an}的通项公式;
(II)求a1+a3+…+a2n+1.
答案
(I)∵S1=a1=1,且数列{Sn}是以2为公比的等比数列,
∴Sn=2n-1.(2分)
又当n≥2时,an=Sn-Sn-1=2n-2(2-1)=2n-2.(5分)
∴an=
(7分)1(n=1) 2n-2(n≥2).
(II)a3,a5,…,a2n+1是以2为首项,以4为公比的等比数列,(9分)
∴a3+a5+…+a2n+1=
.(11分)2(1-4n) 3
∴a1+a3+…+a2n+1=1+
=2(4n-1) 3
.(13分)22n+1+1 3