问题
填空题
已知数列{an}满足an•an+1•an+2•an+3=24,且a1=1,a2=2,a3=3,则a1+a2+a3+…+a2013=______.
答案
依题意可知,an•an+1•an+2•an+3=24,以n+1代n,得出an+1•an+2•an+3•an+4=24,两式相除可推断出an+4=an,
∴数列{an}是以4为周期的数列,
求得a4=4
∴S2013=503×(1+2+3+4)+1=5031
故答案为:5031.