问题 解答题
数列{an}满足 an=2an-1+2n+1(n∈N,n≥2),a3=27.
(Ⅰ)求a1,a2的值;
(Ⅱ)记bn=
1
2n
(an+t)(n∈N*)
,是否存在一个实数t,使数列{bn}为等差数列?若存在,求出实数t;若不存在,请说明理由;
(Ⅲ)求数列{an}的前n项和Sn
答案

(Ⅰ)由a3=27,27=2a2+23+1----------(1分)∴a2=9----------(2分)

∴9=2a1+22+1∴a1=2------------(3分)

(Ⅱ)假设存在实数t,使得{bn}为等差数列.

则2bn=bn-1+bn+1------------(4分)∴

1
2n
(a n+t)=
1
2n-1
(a n-1+t)+
1
2n+1
(a n+1+t)

∴4an=4an-1+an+1+t------------(5分)∴4a n=4×

a n-2n-1
2
+2a n+2n+1+t+1∴t=1------------(6分)

存在t=1,使得数列{bn}为等差数列.------------(7分)

(Ⅲ)由(1)、(2)知:b 1=

3
2
,b 2=
5
2
------------(8分)

又{bn}为等差数列.b n=n+

1
2
a n=(n+
1
2
)•2n-1=(2n+1)•2n-1-1
------------(9分)

∴Sn=3×20-1+5×21-1+7×22-1+…+(2n+1)×2n-1-1=3+5×2+7×22+…+(2n+1)×2n-1-n

∴2Sn=3×2+5×22+7×23+…+(2n+1)×2n-2n∴-Sn=3+2×2+2×22+2×23+…+2×2n-1-(2n+1)×2n+n----------(11分)=1+2×

1-2n
1-2
-(2n+1)×2n+n

=(1-2n)×2n+n-1Sn=(2n-1)×2n-n+1------------(13分)

单项选择题
单项选择题