问题 解答题
已知数列{an}中,a1=1,a2n+1+an2+1=2(an+1an+an+1-an),求数列
1
a1a2
1
a2a3
,…,
1
anan+1
,…
的前n项和Sn
答案

∵an+12+an2+1=2(an+1an+an+1-an

∴an+12-2an+1•an+an2-2(an+1-an)+1=0

∴(an+1-an2-2(an+1-an)+1=0

∴(an+1-an-1)2=0

∴an+1-an=1∴{an}为等差数列

∴an=a1+(n-1)•1=n

∴Sn=

1
a1a2
+
1
a2a3
+…+
1
anan+1

=

1
1•2
+
1
2•3
+…+
1
n(n+1)

=1-

1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1

选择题
单项选择题 A1/A2型题