问题
填空题
已知函数f(x)=lg(1+
|
答案
由题意点An(n,0)(n∈N*),过点An作直线x=n交f(x)的图象于点Bn,
∴An(n,0),Bn+1(n+1,lg(1+
))1 n+1
∵θn=∠Bn+1AnAn+1,
∴tanθn=
lg(1+lg(1+
)-01 n+1 (n+1)-n
)=lg(n+2)-lg(n+1)1 n+1
∴Sn=tanθ1+tanθ2+…+tanθn=lg3-lg2+lg4-lg3+…+lg(n+2)-lg(n+1)=lg(n+2)-lg2
故答案为:lg(n+2)-lg2