问题
解答题
数列{an}的前n项和Sn=
(1)求数列{an}的前n项和Sn; (2)求数列{an}的通项公式; (3)设bn=
|
答案
(1)由S1=a1=
,得1 2
=1 a+b
,由S2=a1+a2=1 2
,得4 3
=4 2a+b
.4 3
∴
,解得a+b=2 2a+b=3
,故Sn=a=1 b=1
; …(4分)n2 n+1
(2)当n≥2时,an=Sn-Sn-1=
-n2 n+1
=( n-1 )2 n
=n3-( n-1 )2(n+1) n(n+1)
.…(7分)n2+n-1 n2+n
由于a1=
也适合an=1 2
. …(8分)n2+n-1 n2+n
∴an=
; …(9分)n2+n-1 n2+n
(3)bn=
=an n2+n-1
=1 n( n+1 )
-1 n
. …(10分)1 n+1
∴数列{bn}的前n项和Tn=b1+b2+…+bn-1+bn=1-
+1 2
-1 2
+…+1 3
-1 n-1
+1 n
-1 n
=1-1 n+1
=1 n+1
. …(14分)n n+1