问题 解答题
数列{an}的前n项和Sn=
n2
an+b
,若a1=
1
2
a2=
5
6

(1)求数列{an}的前n项和Sn
(2)求数列{an}的通项公式;
(3)设bn=
an
n2+n-1
,求数列{bn}的前n项和Tn
答案

(1)由S1=a1=

1
2
,得
1
a+b
=
1
2
,由S2=a1+a2=
4
3
,得
4
2a+b
=
4
3

a+b=2
2a+b=3
,解得
a=1
b=1
,故Sn=
n2
n+1
;               …(4分)

(2)当n≥2时,an=Sn-Sn-1=

n2
n+1
-
( n-1 )2
n
=
n3-( n-1 )2(n+1)
n(n+1)
=
n2+n-1
n2+n
.…(7分)

由于a1=

1
2
也适合an=
n2+n-1
n2+n
.                           …(8分)

an=

n2+n-1
n2+n
;                                         …(9分)

(3)bn=

an
n2+n-1
=
1
n( n+1 )
=
1
n
-
1
n+1
.                     …(10分)

∴数列{bn}的前n项和Tn=b1+b2+…+bn-1+bn=1-

1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
.                                 …(14分)

单项选择题
单项选择题