问题 解答题
已知数列{an}是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足
a2n
=S2n-1
,n∈N*.数列{bn}满足bn=
1
an
-
1
an+1
,Tn为数列{bn}的前n项和.
(1)求a1、d和Tn
(2)是否存在实数λ,使对任意的n∈N*,不等式λTn<n+8恒成立?若存在,请求出实数λ的取值范围;若不存在,请说明理由.
答案

(1)由题意可得,

a21
=S1=a1

∵a1≠0,

∴a1=1.….(1分)

a22
=S3=a1+a2+a3

∴(1+d)2=3+3d,

∴d=-1,2,当d=-1时,a2=0不满足条件,舍去.

因此d=2.….(4分)

∴an=2n-1,

bn=

1
2n-1
-
1
2n+1

Tn=1-

1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

Tn=1-

1
2n+1
=
2n
2n+1
.….(6分)

(2)由题意可得,λ•

2n
2n+1
<n+8,

λ<

(2n+1)(n+8)
2n
=
1
2
(2n+
8
n
+17),….(8分)

2n+

8
n
≥8,当n=2时等号成立,….(10分)

1
2
(2n+
8
n
+17)最小值为
25
2
,….(12分)

因此λ<

25
2
.                 ….(14分)

解答题
选择题