问题
解答题
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*). (1)求数列{an}的通项公式; (2)令cn=(-1)n+1log
|
答案
(1)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2).
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是
-an 2n
=1,所以数列{an-1 2n-1
}是公差为1的等差数列.(5分)an 2n
又S1=2a1-22,所以a1=4.
所以
=2+(n-1)=n+1,故an=(n+1)•2n.(6分)an 2n
(2)因为cn=(-1)n+1•
,则当n≥2时,T2n=1-1 n
+1 2
-1 3
++1 4
-1 2n-1
=(1+1 2n
+1 2
++1 3
)-2(1 2n
+1 2
++1 4
)=1 2n
+1 n+1
++1 n+2
.(9分)1 2n
下面证
+1 n+1
++1 n+2
<1 2n 2 2
令g(x)=ln(x+1)-
(x>0),则g′(x)=x x+1
-1 x+1
=1 (x+1)2
>0,x (x+1)2
∴g(x)在(0,+∞)时单调递增,g(x)>g(0)=0,即当x>0时,ln(x+1)>x x+1
令x=
,ln1 n
>n+1 n
⇒ln(n+1)-lnn>1 n+1
,ln(n+2)-ln(n+1)>1 n+1
,1 n+2
,ln(n+3)-ln(n+2)>
,,ln(2n)-ln(2n-1)>1 n+3 1 2n
以上n个式相加,即有ln(2n)-lnn>
+1 n+1
++1 n+2 1 2n
∴
+1 n+1
++1 n+2
<ln(2n)-lnn=ln2<1 2n
(14分)2 2