问题
解答题
已知数列{an}是首项为a1=
(Ⅰ)求证:数列{bn}成等差数列; (Ⅱ)求数列{cn}的前n项和Sn. |
答案
证明:(Ⅰ)∵数列{an}是首项为a1=
,公比q=1 4
的等比数列,1 4
∴an=
•(1 4
)n-1=(1 4
)n,1 4
∵bn+2=3log
an=3log1 4
(1 4
)n=3n(n∈N*),1 4
∴bn=3n-2;
∴bn+1-bn=3(n+1)-2-(3n-2)=3,
∴数列{bn}是以1为首项,3为公差的成等差数列.
(Ⅱ)∵cn=
=1 bn•bn+1
=1 (3n-2)[3(n+1)-2]
(1 3
-1 3n-2
),1 3n+1
∵数列{cn}的前n项和为Sn,
∴Sn=c1+c2+…+cn
=
[(1-1 3
)+(1 4
-1 4
)+…+(1 7
-1 3n-2
)]1 3n+1
=
(1-1 3
)1 3n+1
=
.n 3n+1