问题 解答题
已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列.设bn+2=3log
1
4
an
(n∈N*),数列{cn}满足cn=
1
bnbn+1

(Ⅰ)求证:数列{bn}成等差数列;
(Ⅱ)求数列{cn}的前n项和Sn
答案

证明:(Ⅰ)∵数列{an}是首项为a1=

1
4
,公比q=
1
4
的等比数列,

∴an=

1
4
(
1
4
)
n-1
=(
1
4
)
n

∵bn+2=3log

1
4
an=3log
1
4
(
1
4
)
n
=3n(n∈N*),

∴bn=3n-2;

∴bn+1-bn=3(n+1)-2-(3n-2)=3,

∴数列{bn}是以1为首项,3为公差的成等差数列.

(Ⅱ)∵cn=

1
bn•bn+1
=
1
(3n-2)[3(n+1)-2]
=
1
3
1
3n-2
-
1
3n+1
),

∵数列{cn}的前n项和为Sn

∴Sn=c1+c2+…+cn

=

1
3
[(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n-2
-
1
3n+1
)]

=

1
3
(1-
1
3n+1

=

n
3n+1

单项选择题 A1型题
填空题