问题
解答题
已知数列{an}中的相邻两项a2k-1,a2k是关于x的方程x2-(3k+2k)x+3k•2k=0的两个根,且a2k-1≤a2k(k=1,2,3,…). (I)求a1,a3,a5,a7; (II)求数列{an}的前2n项和S2n; (Ⅲ)记f(n)=
|
答案
(I)方程x2-(3k+2k)x+3k•2k=0的两个根为x1=3k,x2=2k,
当k=1时,x1=3,x2=2,所以a1=2;
当k=2时,x1=6,x2=4,所以a3=4;
当k=3时,x1=9,x2=8,所以a5=8时;
当k=4时,x1=12,x2=16,所以a7=12.
(II)S2n=a1+a2++a2n=(3+6++3n)+(2+22++2n)=
+2n+1-2.3n2+3n 2
(III)证明:Tn=
+1 a1a2
-1 a3a4
+…+1 a5a6
,(-1)f(n+1) a2n-1a2n
所以T1=
=1 a1a2
,T2=1 6
+1 a1a2
=1 a3a4
.当n≥3时,Tn=5 24
+1 6
-1 a3a4
+…+1 a5a6
,≥(-1)f(n+1) a2n-1a2n
+1 6
-(1 a3a4
+…+1 a5a6
)≥1 a2n-1a2n
+1 6
-1 6•22
(1 6
+…+1 23
)=1 2n
+1 6
-1 6•22
(1-1 24
)> 1 2n-3
,1 6
同时,Tn=
-5 24
-1 a5a6
+…+1 a7a8
≤(-1)f(n+1) a2n-1a2n
-5 24
+(1 a5a6
+…+1 a7a8
)≤1 a2n-1a2n
-5 24
+1 9•23
(1 9
+…+1 24
)=1 2n
-5 24
+1 9•23
•1 9
(1-1 23
)< 1 2n-3
.5 24
综上,当n∈N*时,
≤Tn≤1 6
.5 24