问题 选择题
若数列{an}的前n项和Sn=n2(n∈N*),则
1
a1a2
+
1
a2a3
+…+
1
anan+1
等于(  )
A.
n
2n+1
B.
4n
2n+1
C.
n
2n-1
D.
1
n+2
答案

当n=1时,a1=s1=1

当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1

总之an=2n-1

1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

1
a1a2
+
1
a2a3
+…+
1
anan+1

=

1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n-1
-
1
2n+1
)

=

1
2
(1-
1
2n+1
)

=

n
2n+1

故选A

单项选择题 共用题干题
选择题