问题 解答题
设数列n2an的前n项和为Sn,且Sn=n(n+1)(n+2),n∈N*
(1)求数列an的通项公式;
(2)若数列bn满足bn=a1a2a3…an,n∈N*,求数列bn的通项公式及前n项和Tn
(3)在(2)的条件下,求证:
3
b1
+
32
2b2
+
33
3b3
+…+
3n
nbn
=
n
n+1
答案

(1)当n=1时,a1=6;

当n≥2时,Sn=n(n+1)(n+2)①

Sn-1=(n-1)n(n+1)②

由①-②得:n2an=3n(n+1),即an=

3(n+1)
n

综上得:an=

3(n+1)
n
.(4分)

(2)因为an=

3(n+1)
n

所以bn=a1a2a3an=

3×2
1
×
3×3
2
×
3×4
3
××
3(n+1)
n
=3n(n+1).

故bn=3n(n+1).(6分)

Tn=2•3+3•32+4•33+…+n•3n-1+(n+1)•3n.③

3Tn=2•32+3•33+4•34+…+n•3n+(n+1)•3n+1.④

③-④得:-2Tn=2•3+32+33+…+3n-(n+1)•3n+1=

1
2
3n+1
3
2
-(n+1)•3n+1

化简得:Tn=(

n
2
+
1
4
)•3n+1-
3
4
.(9分)

(3)由bn=3n(n+1),得

3n
bn
=
1
n+1
,等式两端同时乘以
1
n

3n
nbn
=
1
n(n+1)
.则有

3
b1
+
32
2b2
33
3b3
+…+
3n
nbn
=
1
1×2
+
1
2×3
+
1
3×4
+…
1
n(n+1)

1-

1
2
+
1
2
-
1
3
+…+ 
1
n
-
1
n+1

=1-

1
n+1

=

n
n+1
.(12分)

填空题
单项选择题 共用题干题