问题
解答题
设数列n2an的前n项和为Sn,且Sn=n(n+1)(n+2),n∈N*. (1)求数列an的通项公式; (2)若数列bn满足bn=a1a2a3…an,n∈N*,求数列bn的通项公式及前n项和Tn; (3)在(2)的条件下,求证:
|
答案
(1)当n=1时,a1=6;
当n≥2时,Sn=n(n+1)(n+2)①
Sn-1=(n-1)n(n+1)②
由①-②得:n2an=3n(n+1),即an=
.3(n+1) n
综上得:an=
.(4分)3(n+1) n
(2)因为an=
,3(n+1) n
所以bn=a1a2a3an=
×3×2 1
×3×3 2
××3×4 3
=3n(n+1).3(n+1) n
故bn=3n(n+1).(6分)
Tn=2•3+3•32+4•33+…+n•3n-1+(n+1)•3n.③
3Tn=2•32+3•33+4•34+…+n•3n+(n+1)•3n+1.④
③-④得:-2Tn=2•3+32+33+…+3n-(n+1)•3n+1=
•3n+1+ 1 2
-(n+1)•3n+13 2
化简得:Tn=(
+n 2
)•3n+1-1 4
.(9分)3 4
(3)由bn=3n(n+1),得
=3n bn
,等式两端同时乘以1 n+1
,1 n
得
=3n nbn
.则有1 n(n+1)
+3 b1
+ 32 2b2
+…+33 3b3
=3n nbn
+1 1×2
+1 2×3
+…1 3×4 1 n(n+1)
1-
+1 2
-1 2
+…+ 1 3
-1 n 1 n+1
=1-1 n+1
=
.(12分)n n+1