问题 解答题
已知数列{an}满足:a1=a2=a3=2,an+1=a1a2…an-1(n≥3),记bn-2=a12+a22+…+an2-a1a2…an(n≥3).
(1)求证数列{bn}为等差数列,并求其通项公式;
(2)设cn=1+
1
b2n
+
1
b2n+1
,数列{
cn
}的前n项和为Sn,求证:n<Sn<n+1.
答案

(1)方法一  当n≥3时,因bn-2=a12+a22+…+an2-a1a2…an①,

故bn-1=a12+a22+…+an2+an+12-a1a2…anan+1②. …(2分)

②-①,得  bn-1-bn-2=an+12-a1a2…an(an+1-1)=an+12-(an+1+1)(an+1-1)=1,为常数,

所以,数列{bn}为等差数列. …(5分)

因  b1=a12+a22+a32-a1a2a3=4,故  bn=n+3.   …(8分)

方法二  当n≥3时,a1a2…an=1+an+1,a1a2…anan+1=1+an+2

将上两式相除并变形,得  an+12=an+2-an+1+1.…(2分)

于是,当n∈N*时,bn=a12+a22+…+an+22-a1a2…an+2

=a12+a22+a32+(a5-a4+1)+…+(an+3-an+2+1)-a1a2…an+2

=a12+a22+a32+(an+3-a4+n-1)-(1+an+3

=10+n-a4

又a4=a1a2a3-1=7,故bn=n+3(n∈N*).

所以数列{bn}为等差数列,且bn=n+3. …(8分)

(2)因  cn=1+

1
(n+3)2
+
1
(n+4)2
=
((n+3)(n+4)+1)2
(n+3)2(n+4)2
,…(12分)

故  

cn
=
(n+3)(n+4)+1
(n+3)(n+4)
=1+
1
(n+3)(n+4)
=1+
1
n+3
-
1
n+4

所以  Sn=(1+

1
4
-
1
5
)+(1+
1
5
-
1
6
)+…+(1+
1
n+3
-
1
n+4
)=n+
1
4
-
1
n+4
,…(15分)

即  n<Sn<n+1. …(16分)

选择题
选择题