问题
解答题
已知数列{an}中,a1=
(Ⅰ)求数列{bn}的通项公式; (Ⅱ)设数列{
|
答案
(I)当n=1时,b1=
=3,1 a1
当n≥2时,bn-bn-1=
-1 an
=1 an-1
=1,an-1-an an•an-1
∴数列{bn}是首项为3,公差为1的等差数列,
∴通项公式为bn=n+2;(5分)
(II)∵
=1 nbn
,1 n(n+2)
∴Tn=
+1 1•3
+1 2•4
++1 3•5 1 n(n+2)
=
[(1-1 2
)+(1 3
-1 2
)+(1 4
-1 3
)++(1 5
-1 n
)]1 n+2
=
[1 2
-(3 2
+1 n+1
)]1 n+2
=
[1 2
-3 2
]2n+3 (n+1)(n+2)
∵
>2n+3 (n+1)(n+2)
=2n+2 (n+1)(n+2) 2 n+2
∴-
<-2n+2 (n+1)(n+2) 2 n+2
∴
[1 2
-3 2
<2n+3 (n+1)(n+2)
[1 2
-3 2
]=2 n+2
-3 4 1 n+2
∴Tn<
-3 4
.(13分)1 n+2