已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),设bn=
|
∵(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),
∴(2n-1)an-(2n+1)an-1=2(4n2-1),
又n>1,等式两端同除以4n2-1得:
-an 2n+1
=2,即数列{an-1 2n-1
}是以1为首项,2为公差的等差数列.an 2n+1
∴
=1+(n-1)×2=2n-1,an 2n+1
∴
=1 an
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
),1 2n+1
∴sn=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n-1
)=1 2n+1
.当n=1时,s1=n 2n+1
;n→+∞时,sn→1 3 1 2
∴
≤ sn<1 3
,1 2
故答案为B.