问题 选择题
已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),设bn=
1
an
,数列{bn}的前n项的和Sn,则Sn的取值范围为(  )
A.(0,
1
2
)
B.[
1
3
1
2
)
C.(
1
3
1
2
)
D.[
1
3
1
2
]
答案

∵(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),

∴(2n-1)an-(2n+1)an-1=2(4n2-1),

又n>1,等式两端同除以4n2-1得:

an
2n+1
-
an-1
2n-1
=2,即数列{
an
2n+1
}是以1为首项,2为公差的等差数列.

an
2n+1
=1+(n-1)×2=2n-1,

1
an
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴sn=

1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
n
2n+1
当n=1时,s1=
1
3
;n→+∞时,sn
1
2

1
3
≤ sn
1
2

故答案为B.

判断题
单项选择题