问题
解答题
已知数列{an}满足:a1=3,且an+1=2an-1(n∈N*). (1)求证数列{an-1}是等比数列,并求出数列{an}的通项公式an. (2)令bn=
|
答案
(1)∵an+1=2an-1,两边同时减去1,得
an+1-1=2(an-1),又a1-1=2
∴{an-1}是以a1-1=2为首项,q=2为公比的等比数列,
∴an-1=2n
∴an=2n+1(n∈N*)
(2)证明:∵an=2n+1(n∈N*),
∴bn=
=1 an+1-an
=1 2n+1-2n
(n∈N*)1 2n
∴Sn=b1+b2+…+bn=
+1 21
+1 22
+…+1 23
=1 2n
=1-
(1-1 2
)1 2n 1- 1 2 1 2n