问题
解答题
已知公差为d的等差数列an,0<a1<
(1)求数列an的通项公式; (2)设bn=
|
答案
(1)∵sin(a1+a3)=sina2,∴sin2a2=2sina2cosa2=sina2,∴sina2(2cosa2-1)=0,
∵0<a1<
,0<d<π 2
,∴0<a2<π,∴sina2≠0,∴cosa2=π 2
,∴a2=1 2
,π 3
∵cos(a3-a1)=cosa2,∴cos2d=cos
,∴d=π 3
,∴a1=π 6
,∴an=π 6
+(n-1)•π 6
=π 6
,∴数列an的通项公式为an=nπ 6
.nπ 6
(2)∵Sn=
=n(a1+an) 2
,∴bn=n(n+1)π 12
=Sn (n+1)•2n-1
=πn 6•2n
•π 6
,n 2n
∴Tn=
(π 6
+2•1 2
+3•1 22
+4•1 23
++n•1 24
)①,1 2n
Tn=1 2
[π 6
+2•1 22
+3•1 23
+4•1 24
++(n-1)•1 25
+n•1 2n
]②,1 2n+1
①-②得
Tn=1 2
(π 6
+1 2
+1 22
+1 23
++1 24
-n•1 2n
)=1 2n+1
-
(1-π 12
)1 2n 1- 1 2
•nπ 6
=1 2n+1
(1-π 6
)-1 2n
•nπ 6
,1 2n+1
∴Tn=
-π 3
.(n+2)π 3•2n+1