问题 解答题
数列{an}的前n项和为Sn,若a1=3,点(Sn,Sn+1)在直线y=
n+1
n
x+n+1
(n∈N*)上.
(Ⅰ)求证:数列{
Sn
n
}
是等差数列;
(Ⅱ)若数列{bn}满足bn=an2an,求数列{bn}的前n项和Tn
(Ⅲ)设Cn=
Tn
22n+3
,求证:C1+C2+…+Cn
20
27
答案

(Ⅰ)∵点(Sn,Sn+1)在直线y=

n+1
n
x+n+1(n∈N*)上,

Sn+1=

n+1
n
Sn+n+1,

同除以n+1,则有:

Sn+1
n+1
-
Sn
n
=1

∴数列{

Sn
n
}是以3为首项,1为公差的等差数列.

(Ⅱ)由(Ⅰ)可知,Sn=n2+2n(n∈N*),∴当n=1时,a1=3,

当n≥2时,an=Sn-Sn-1=2n+1,经检验,当n=1时也成立,

∴an=2n+1(n∈N*).

bn=an2an,∴bn=(2n+1)•22n+1

Tn=3•23+5•25++(2n-1)•22n-1+(2n+1)•22n+14Tn

=3•25++(2n-3)22n-1+(2n-1)22n+1+(2n+1)22n+3

解得:Tn=(

2
3
n+
1
9
)•22n+3-
8
9

(Ⅲ)∵Cn=

Tn
22n+3
=
2n
3
+
1
9
-
1
9
•(
1
4
)n

C1+C2+…+Cn=

2
3
n(n+1)
2
+
1
9
•n-
1
9
1
4
[1-(
1
4
)
n
]
1-
1
4
=
3n2+4n
9
-
1
27
+
1
27
(
1
4
)
n
3n2+4n
9
-
1
27

7
9
-
1
27
=
20
27

选择题
单项选择题 A1/A2型题