问题
解答题
数列{an}的前n项和为Sn,若a1=3,点(Sn,Sn+1)在直线y=
(Ⅰ)求证:数列{
(Ⅱ)若数列{bn}满足bn=an•2an,求数列{bn}的前n项和Tn; (Ⅲ)设Cn=
|
答案
(Ⅰ)∵点(Sn,Sn+1)在直线y=
x+n+1(n∈N*)上,n+1 n
Sn+1=
Sn+n+1,n+1 n
同除以n+1,则有:
-Sn+1 n+1
=1Sn n
∴数列{
}是以3为首项,1为公差的等差数列.Sn n
(Ⅱ)由(Ⅰ)可知,Sn=n2+2n(n∈N*),∴当n=1时,a1=3,
当n≥2时,an=Sn-Sn-1=2n+1,经检验,当n=1时也成立,
∴an=2n+1(n∈N*).
∵bn=an2an,∴bn=(2n+1)•22n+1,
Tn=3•23+5•25++(2n-1)•22n-1+(2n+1)•22n+14Tn
=3•25++(2n-3)22n-1+(2n-1)22n+1+(2n+1)22n+3
解得:Tn=(
n+2 3
)•22n+3-1 9
.8 9
(Ⅲ)∵Cn=
=Tn 22n+3
+2n 3
-1 9
•(1 9
)n1 4
∴C1+C2+…+Cn=
•2 3
+n(n+1) 2
•n-1 9
•1 9
=
[1-(1 4
)n]1 4 1- 1 4
-3n2+4n 9
+1 27
(1 27
)n>1 4
-3n2+4n 9 1 27
≥
-7 9
=1 27
.20 27