问题
填空题
已知数列{an}中a1=1,a2=2,数列{an}的前n项和为Sn,当整数n>1时,Sn+1+Sn-1=2(Sn+S1)都成立,则数列{
|
答案
由于a1=1,a2=2,当整数n>1时,Sn+1+Sn-1=2(Sn+S1)都成立,
所以S1=a1=1,S2=3,S3=7,故a3=4,
由于数列{an}中数列{an}的前n项和为Sn,当整数n>1时,Sn+1+Sn-1=2(Sn+S1)都成立,
则Sn+2+Sn=2(Sn+1+S1)所以an+2+an=2an+1,则数列{an}从第二项起为等差数列,
则数列an=
,所以n>1时,1,n=1 2n-2,n≥2
=1 anan+1
=1 (2n-2)(2(n+1)-2)
-1 2n-2
=1 2(n+1)-2
-1 2n-2
,1 2n
故数列{
}的前n项和为Tn=(1-1 anan+1
)+1 2
[(1 2
-1 2
)+(1 4
-1 4
)…+(1 6
-1 2n-2
)]=1 2n
+1 2
(1 2
-1 2
)=1 2n
.3n-1 4n
故答案为
.3n-1 4n